Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Qian Liu,* Hai-Bo Wang, Yue-Qing Pu and Xiao-Chen Yan

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.046 wR factor = 0.142 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl {2-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-ylmethoxy]phenyl}acetate

The title compound, $C_{18}H_{15}BrN_2O_4$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 3-(4-bromo)phenyl-5-chloromethyl-1,2,4-oxadiazole. Weak intra-molecular $C-H\cdots N$ hydrogen bonds are observed in the crystal structure.

Received 19 October 2005 Accepted 14 February 2006

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxadiazole have intrinsic analgesic (Terashita *et al.*, 2002), anti-inflammatory (Nicolaides *et al.*, 1998) and anti-picornaviral (Romero, 2001) properties and show high efficacy as agonists [*e.g.* for muscarinic (Macor *et al.*, 1996), adrenergic (Quagliato & Andrae, 2002) and 5-hydroxytryptamine (Gur *et al.*, 2001)] and antagonists [*e.g.* for angiotensin (Naka & Kubo, 1999) and adhesion (Juraszyk *et al.*, 1997)] for different receptors. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1 in which dashed lines indicate intramolecular $C-H\cdots N$ hydrogen bonds (Table 2). The bond lengths and angles are given in Table 1.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 3-(4-Bromophenyl)-5-chloromethyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford crude (I). Pure (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃): δ 7.94–7.97 (*m*, 2H), 7.61–7.63 (*m*, 2H), 7.23–7.29 (*m*, 2H), 6.97–7.03 (*m*, 2H), 5.35 (*s*, 2H), 3.72 (*s*, 2H), 3.69 (*s*, 3H).

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $C_{18}H_{15}BrN_2O_4$ $M_r = 403.23$ Monoclinic, C2/c a = 20.011 (4) Å b = 9.643 (2) Å c = 18.089 (4) Å $\beta = 98.33$ (3)° V = 3453.7 (12) Å³ Z = 8

Data collection

Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.446, T_{\max} = 0.645$ 3130 measured reflections 3038 independent reflections 1670 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.142$ S = 1.023038 reflections 227 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Br-C16	1.898 (5)	N1-C11	1.287 (6)
O1-C2	1.333 (6)	N1-C12	1.375 (6)
O1-C1	1.441 (6)	N2-C12	1.310 (6)
O2-C2	1.187 (5)	C2-C3	1.496 (7)
O3-C9	1.382 (6)	C3-C4	1.499 (7)
O3-C10	1.405 (6)	C10-C11	1.474 (7)
O4-C11	1.333 (6)	C12-C13	1.467 (6)
O4-N2	1.416 (5)		
C2-O1-C1	116.2 (4)	O3-C10-C11	108.8 (4)
C9-O3-C10	117.7 (4)	N1-C11-O4	113.8 (5)
C11-O4-N2	106.3 (3)	N1-C11-C10	128.0 (5)
C11-N1-C12	102.7 (4)	O4-C11-C10	118.2 (4)
C12-N2-O4	102.7 (4)	N2-C12-N1	114.5 (4)
O2-C2-O1	123.1 (5)	N2-C12-C13	122.1 (5)
O2-C2-C3	125.3 (5)	N1-C12-C13	123.5 (4)
O1-C2-C3	111.6 (4)	C18-C13-C12	122.0 (4)
C2-C3-C4	112.9 (4)	C14-C13-C12	119.0 (5)
O3-C9-C4	114.1 (4)	C15-C16-Br	119.0 (4)
O3-C9-C8	124.6 (5)	C17-C16-Br	120.5 (4)

 $D_x = 1.551 \text{ Mg m}^{-3}$

Cell parameters from 25

Mo $K\alpha$ radiation

reflections

 $\mu = 2.41 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 25.0^{\circ}$ $h = 0 \rightarrow 23$

 $k=0\rightarrow 11$

 $l = -21 \rightarrow 21$

3 standard reflections

every 200 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0030 (3)

+ 0.6P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Block, colourless

 $0.40 \times 0.40 \times 0.20 \ \text{mm}$

 $\theta = 9 - 12^{\circ}$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C14-H14A\cdots N1\\ C18-H18A\cdots N2 \end{array}$	0.93	2.57	2.899 (7)	101
	0.93	2.60	2.889 (7)	100

Figure 1

A view of the molecular structure of (I), with dashed lines indicating intramolecular $C-H\cdots N$ hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level

All H atoms were placed in calculated positions, with C–H distances in the range 0.93–0.97 Å. They were included in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Gur, E., Dremencov, E., Lerer, B. & Newman, M. E. (2001). *Eur. J. Pharmacol.* **411**, 115–122.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). Int. Patent Appl. No. WO199744333.
- Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. & Mack, R. A. (1996). J. Org. Chem. 61, 3228–3229.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Quagliato, D. A. & Andrae, P. M. (2002). Int. Patent Appl. WO200206250.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terashita, Z., Naruo, K. & Morimoto, S. (2002). Int. Patent Appl. WO2002060439.